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Abstract— Tracking Lagrangian coherent structures in dy-
namical systems is important for many applications such as
oceanography and weather prediction. In this paper, we present
a collaborative robotic control strategy designed to track stable
and unstable manifolds. The technique does not require global
information about the fluid dynamics, and is based on local
sensing, prediction, and correction. The collaborative control
strategy is implemented on a team of three robots to track
coherent structures and manifolds on static flows as well as a
noisy time-dependent model of a wind-driven double-gyre often
seen in the ocean. We present simulation and experimental
results and discuss theoretical guarantees of the collaborative
tracking strategy.

I. INTRODUCTION
In this paper, we present a collaborative control strategy

for a class of autonomous underwater vehicles (AUVs) to
track the coherent structures and manifolds on flows. In
realistic ocean flows, these time-dependent coherent struc-
tures, or Lagrangian coherent structures (LCS), are similar
to separatrices that divide the flow into dynamically distinct
regions. LCS are extensions of stable and unstable manifolds
to general time-dependent flows [1], and they carry a great
deal of global information about the dynamics of the flows.
For two-dimensional (2D) flows, LCS are analogous to ridges
defined by local maximum instability, and quantified by local
measures of Finite-Time Lyapunov Exponents (FTLE) [2].

Recently, LCS have been shown to coincide with optimal
trajectories in the ocean which minimize the energy and the
time needed to traverse from one point to another [3], [4].
Furthermore, to improve weather and climate forecasting,
and to better understand various physical, chemical, and
geophysical processes in the ocean, there has been significant
interest in the deployment of autonomous sensors to measure
a variety of quantities of interest. One drawback to operating
sensors in time-dependent and stochastic environments like
the ocean is that the sensors will tend to escape from their
monitoring region of interest. Since the LCS are inherently
unstable and denote regions of the flow where more es-
cape events may occur [5], knowledge of the LCS are of
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paramount importance in maintaining a sensor in a particular
monitoring region.

Existing work in cooperative boundary tracking for robotic
teams that relies on one-dimensional (1D) parameteriza-
tions include [6], [7] and [8], [9] for static and time-
dependent cases respectively. Formation control strategies for
distributed estimation of level surfaces and scalar fields in
the ocean are presented in [10]–[12] and pattern formation
for surveillance and monitoring by robot teams is discussed
in [13]–[15]. Our work is distinguished from existing work
in that we use cooperative robots to find coherent structures
without requiring a global picture of the ocean dynamics. We
take inspiration from [16] and design a strategy to enable
a team of robots to track the stable/unstable manifolds of
general 2D conservative flows through local sensing alone.
We verify the feasibility of our method through simulations
and experiments and show how the proposed strategy can
be extended to track coherent structures in time-dependent
conservative flows with measurement noise. To our knowl-
edge, this is the first attempt in the development of tracking
strategies for mapping LCS in the ocean using AUVs.

The novelty of this work lies in the use of nonlinear
dynamical and chaotic system analysis techniques to derive
a tracking strategy for a team of robots. The cooperative
control strategy leverages the spatio-temporal sensing capa-
bilities of a team of networked robots to track the boundaries
separating the regions in phase space that support distinct
dynamical behavior. Additionally, our boundary tracking
relies solely on local measurements of the velocity field.
Our technique is quite general, and may be applied to any
conservative flow.

The paper is structured as follows: We formulate the
problem and outline key assumptions in Section II. The
cooperative control strategy is presented in Section III and
its theoretical properties analyzed in Section IV. Section
V presents our simulation and experimental results. The
extension of the proposed strategy to a noisy time-dependent
model of a wind-driven double-gyre is presented in VI. We
conclude with a discussion of our results and directions for
future work in Sections VII and VIII respectively.

II. PROBLEM FORMULATION

We consider the problem of controlling a team of N
planar AUVs to collaboratively track the material lines that
separate regions of flow with distinct fluid dynamics. This is
similar to the problem of tracking the stable (and unstable)
manifolds of a general nonlinear dynamical system where
the manifolds separate regions in phase space with distinct
dynamical behaviors. We assume the following 2D kinematic
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model for each of the AUVs:

ẋi =Vi cosθi +ui, (1a)

ẏi =Vi sinθi + vi, (1b)

where xi = [xi, yi]
T is the vehicle’s planar position, Vi and θi

are the vehicle’s linear speed and heading, and ui = [ui, vi]
T

is the velocity of the fluid current experienced/measured by
the ith vehicle. Additionally, we assume each agent can be
circumscribed by a circle of radius r, i.e., each vehicle can
be equivalently described as a disk of radius r.

In this work, ui is provided by a 2D planar conservative
vector field described by a differential equation of the form

ẋ = F(x). (2)

In essence, ui = Fx(xi) and vi = Fy(xi). Let BS and BU denote
the stable and unstable manifolds of (2). In general, BS and
BU are the separating boundaries between regions in phase
space with distinct dynamics. For 2D flows, B∗ are simply
one-dimensional curves where ∗ denotes either stable (S) or
unstable (U) boundaries. For a small region centered about a
point on B∗, the system is unstable in one dimension. Finally,
let ρ(B∗) denote the radius of curvature of B∗ and assume
that the minimum of the radius of curvature ρmin(B∗) > r.
This last assumption is needed to ensure the robots do not
lose track of the B∗ due to sharp turns.

The objective is to develop a collaborative strategy to
enable a team of robots to track B∗ in general 2D planar
conservative flow fields through local sampling of the veloc-
ity field. While the focus is on the development of a tracking
strategy for BS, the proposed method can be easily extended
to track BU since BU are simply stable manifolds of (2) for
t < 0. We present our methodology in the following section.

III. METHODOLOGY

Our methodology is inspired by the Proper Interior Max-
imum (PIM) Triple Procedure [16] – a numerical technique
designed to find stationary trajectories in chaotic regions with
no attractors. While the original procedure was developed for
chaotic dynamical systems, the approach can be employed to
reveal the stable set of a saddle point of a general nonlinear
dynamical system. The procedure consists of iteratively
finding an appropriate PIM Triple on a saddle straddling
line segment and propagating the triple forward in time. We
briefly summarize the procedure in the following section and
refer the interested reader to [16] for further details.

A. The PIM Triple Procedure

Given the dynamical system described by (2), let D ∈R2

be a closed and bounded set such that D does not contain
any attractors of (2). Given a point x∈D , the escape time of
x, denoted by TE(x), is the time x takes to leave the region
D under the differential map (2).

Let J be a line segment that crosses the stable set BS
in D , i.e., the endpoints of the J are on opposite sides of
BS. Let {xL,xC,xR} denote a set of three points in J such
that xC denotes the interior point. Then {xL,xC,xR} is an

Interior Maximum triple if TE(xC) > max{TE(xL),TE(xR)}.
Furthermore, {xL,xC,xR} is a Proper Interior Maximum
(PIM) triple if it is an Interior Maximum triple and the
interval [xL,xR] in J is a proper subset of J.

Then the numerical computation of any PIM triple can
be obtained iteratively starting with an initial saddle straddle
line segment J0. Let xL0 and xR0 denote the endpoints of J0
and apply an ε0 > 0 discretization of J0 such that xL0 = q0 <
q1 < .. . < qM = xR0 . For every point qi, determine TE(qi)
by propagating qi forward in time using (2). Then the PIM
triple in J0 is given by the the points {qk−1,qk,qk+1} where
qk = arg max

i=1,...,M
TE(qi). This PIM triple can then be further

refined by choosing J1 to be the line segment containing
{qk−1,qk,qk+1} and reapplying the procedure with another
ε1 > 0 discretization where ε1 < ε0.

Given an initial saddle straddling line segment J0, it has
been shown that the line segment given by any subsequent
PIM triple on J0 is also a saddle straddling line segment [16].
Furthermore, if we use a PIM triple x(t) = {xL,xC,xR} as
the initial conditions for the dynamical system given by (2)
and propagate the system forward in time by ∆t, then the
line segment containing the set x(t +∆t), Jt+∆t , remains a
saddle straddle line segment. As such, the same numerical
procedure can be employed to determine an appropriate
PIM triple on Jt+∆t . This procedure can be repeated to
eventually reveal the entire stable set BS and unstable set
BU within D if time was propagated forwards and backwards
respectively. Furthermore, since the procedure always begins
with a valid saddle straddling line segment, by construction,
the procedure always results in a non-empty set.

Inspired by the PIM Triple Procedure, we propose a
cooperative saddle straddle control strategy for a team of
N ≥ 3 robots to track the stable (and unstable) manifolds
of a general conservative time-independent flow field F(x).
Different from the procedure, our robots will solely rely on
information that can be gathered via local sensing and shared
through the network. In contrast, a straight implementation
of the PIM Triple Procedure would require global knowledge
of the structure of the system dynamics throughout a given
region given its reliance on computing escape times. We
describe our approach in the following section.

B. Controller Synthesis

Consider a team of three robots and identify them as
robots {L,C,R}. While the robots may be equipped with
similar sensing and actuation capabilities, we propose a
heterogeneous cooperative control strategy.

Let x(0) = [xT
L (0), xT

C(0), xT
R(0)]

T be the initial conditions
for the three robots. Assume that x(0) lies on the line
segment J0 where J0 is a saddle straddle line segment and
{xL(0),xC(0),xR(0)} constitutes a PIM triple. Similar to the
PIM Triple Procedure, the objective is to enable the robots
to maintain a formation such that a valid saddle straddle line
segment can be maintained between robots L and R. Instead
of computing the escape times for points on J0 as proposed
by the PIM Triple Procedure, robot C must remain close
to BS using only local measurements of the velocity field



Fig. 1. Three robots tracking BS in a conservative vector field. The
blue dash-dot lines represent the robot trajectories, the green dashed line
represents the saddle straddle line segment J, and pL and pR denotes the
target positions for L and R respectively when executing UP and UA.

provided by the rest of the team. As such, we refer to robot
C as the tracker of the team while robots L and R maintains
a straddle formation across the boundary at all times. Robots
L and R may be thought of herding robots, since they control
and determine the actions of the tracking robot.

1) Straddling Formation Control: The controller for the
straddling robots consists of two discrete states: a passive
control state, UP, and an active control state, UA. The robots
initialize in the passive state UP where the objective is to
follow the flow of the ambient vector field. Therefore, Vi = 0
for i= L,R. Robots execute UP until they reach the maximum
allowable separation distance dMax from robot C. When ‖xi−
xC‖> dMax, robot i switches to the active control state, UA,
where the objective is to navigate to a point pi on the current
projected saddle straddle line segment Ĵt such that ‖pi −
pc‖= dMin and pC denotes the midpoint of Ĵt . When robots
execute UA , Vi = ‖(pi− xi)− ui‖ and θi(t) = αi(t) where
αi is the angle between the desired, (pi− xi), and current
heading, ui, of robot i as shown in Fig. 1. In summary, the
straddling control strategy for robots L and R is given by

Vi =

{
0 if dMin < ‖xi−xC‖< dMax
‖(pi−xi)−ui‖ otherwise ,

(3a)

θi =

{
0 if dMin < ‖xi−xC‖< dMax
αi otherwise . (3b)

We note that while the primary control objective for robots
L and R is to maintain a straddle formation across BS, robots
L and R are also constantly sampling the velocity of the
local vector field and communicating these measurements
and their relative positions to robot C. Robot C is then tasked
to use these measurements to track the position of BS.

2) Manifold Tracking Control: Let ûL(t), ûC(t), and ûR(t)
denote the current velocity measurements obtained by robots
L, C, and R at their respective positions. Let d(·, ·) denote the
Euclidean distance function and assume that d(xC,BS) < ε

such that ε > 0 is small. Given the straddle line segment Jt
such that xL(k) and xR(k) are the endpoints of Jt , we consider
an εt < ε discretization of Jt such that xL = q1 < q2 < .. . <
qM = xR. The objective is to use the velocity measurements
provided by the team to interpolate the vector field at the

points q1, . . . ,qM . Since (2) has C 1 continuity and if xC is
ε-close to BS, then the point qB = arg max

k=1,...,M
u(qk)

T ûC(t)

should be δ -close to BS where ε < δ < A and A is a small
enough positive constant.

While there are numerous vector field interpolation tech-
niques available [17]–[19], we employ the inverse distance
weighting method described in [17]. For a given set of veloc-
ity measurements ûi(t) and corresponding position estimates
x̂i(t), the velocity vector at some point qk is given by

u(qk) = ∑
j

N

∑
i=1

wi jûi( j)

∑ j ∑
N
i=1 wi j

where wi j = ‖x̂i( j)−qi‖−2. Rather than rely solely on the
current measurements provided by the three robots, it is
possible to include the recent history of ûi(t) to improve
the estimate of u(qk), i.e., ûi(t−∆T ), ûi(t− 2∆T ), and so
on, where ∆T is the sampling period and i = {L,C,R}. Thus,
the control strategy for the tracking robot C is given by

VC = ‖[(qB +bûB)−xC]−uC‖ (4a)
θC = βC (4b)

where βC denotes the difference in the heading of robot C
and the vector (qB− ûB) and b > r is a small number. The
term bûB is included to ensure that the control strategy aims
for a point in front of robot C rather than behind it. As such,
the projected saddle straddle line segment Ĵt at each time
step is given by pc = qC + buC with Ĵt orthogonal to BS at
qC and ‖Ĵt‖ chosen to be in the interval [2dMin,2dMax].

IV. ANALYSIS

In this section, we discuss the theoretical feasibility of the
proposed saddle straddle control strategy. We begin with the
following key assumption on the robots’ initial positions.

Assumption 1: Given a team of three robots {L,C,R},
assume that d(xC(0),BS) < ε for a small value of ε > 0,
‖xL− xC‖ = ‖xR− x‖ = dMin with dMin > 2r, and robots L
and R are on opposite sides of BS.

In other words, assume that the robots initialize in a
valid PIM triple formation and their positions form a saddle
straddle line segment orthogonal to BS. Our main result
concerns the validity of the saddle straddle control strategy.

Theorem 1: Given a team of 3 robots with kinematics
given by (1) and ui given by (2), the feedback control strategy
(3) and (4) maintains a valid saddle straddle line segment in
the time interval [t, t+∆t] if the initial positions of the robots,
x(t), is a valid PIM triple.

Proof: To show this, we must show that at time t +∆t,
robots L and R remain on opposite sides of BS. Consider the
rate of change of the following function

H(xL,xR) =
1
2
(xL−xR)

T (xL−xR).

The above expression is simply one half the square of the
distance between robots L and R. Let Jt denote the saddle
straddle line segment defined by xL(t) and xR(t) at t and
let pB be the intersection of Jt and BS. By construction, if



we linearize (2) about the point pB, then the Jacobian of
(2) at pB will have one positive eigenvalue. Furthermore, the
linearized system can be diagonalized such that the direction
of instability lies along Jt [20]. Thus, d

dt H > 0 in the time
interval [t, t +∆t] when Vi = 0 in (3).

When Vi 6= 0 in (3) for i = L,R, d
dt H < 0 if the robots

L and R are moving closer to robot C after reaching the
maximum allowable separation distance. Recall ρmin(BS) >
r, the smallest radius of curvature of BS, and dMin > 2r.
Furthermore, robot C initializes ε-close to the boundary and
(4) steers C towards pC on Ĵt where Ĵt is orthogonal to BS
at xC. This ensures that the rate of the change of the radius
of curvature of the manifold BS is small enough such that Ĵt
intersects with BS only once. Since dMin > 2r, this ensures
that even if d

dt H < 0, the straddling robots never cross the
boundary as they move closer to the tracking robot.

The above theorem guarantees that for any given time
interval [t, t + ∆t] the team maintains a valid PIM triple
formation. As such, the iterative application of the proposed
control strategy leads to the following proposition.

Proposition 1: Given a team of 3 robots with kinematics
given by (1) and ui given by (2), the feedback control strategy
(3) and (4) results in an estimate of BS, denoted as B̂S, such
that

〈
BS, B̂S

〉
L2

< W for some W > 0 where 〈·, ·〉L2
denotes

the inner product (which provides an L2 measure between
the BS and B̂S curves).

From Thm. 1, since the team is able to maintain a valid
PIM triple formation across BS for any given time interval
[t, t+∆t], this ensures that an estimate of BS in the given time
interval also exists. Applying this reasoning in a recursive
fashion, one can show that an estimate of BS can be obtained
for any arbitrary time interval. The challenge, however, lies
in determining the bound on W such that B̂S results in a good
enough approximation since W depends on the sensor and
actuation noise, the vector interpolation routine, the sampling
frequency, and the time scales of the flow dynamics. This is
a direction for future work.

V. RESULTS

A. Simulations

We illustrate the proposed control strategy given by (3)
and (4) with some simulation results. Fig. 2(a) shows the
trajectories of three robots tracking a sinusoidal boundary
while Fig. 2(b) shows the team tracking a 1D star-shaped
boundary. We note that throughout the entire length of the
simulation, the team maintains a saddle straddle formation
across the boundary.

In both examples, u = −a∇ϕ − b∇×ψ where a,b > 0
and ϕ is an artificial potential function such that ϕ(x) = 0
for all x ∈ B∗ and ϕ(x) < 0 for any x ∈ R2/B∗. The vector
ψ is a 3×1 vector whose entries are given by [0, 0, γ(x,y)]T

where γ(x,y) is the curve describing the desired boundary
[15]. Lastly, the estimated position of the boundary is given
by the position of the tracking robot, i.e., robot C. In these
examples, we filtered the boundary position using a simple
first-order low pass filter.

(a) (b)

Fig. 2. Trajectories of 3 robots tracking a (a) sinusoidal boundary and a
(b) star-shaped boundary. The red dashed line is the estimated position of
the desired boundary shown in solid black. The start positions are shown
by 4 and the end positions are shown by the circle-enclosed blue triangles.

(a) (b)

Fig. 3. Trajectories of the 3 robot team tracking a (a) star shape. The red
dashed line is the estimated position of the desired boundary shown in solid
black. The start positions are shown by 4 and the end positions are shown
by ©. (b) Snapshot of the multi-robot experiment.

B. Experiments

We also implemented the control strategy on our multi-
robot testbed. The testbed consisted of three mSRV-1 robots
in a 4.8x5.4 meter workspace. The mSRV-1 are differential-
drive robots equipped with an embedded processor, color
camera, and 802.11 wireless capability. Localization for each
robot was provided via a network of overhead cameras.
Fig. 3(a) shows the trajectories of the robots tracking a star
shaped boundary shown in black. Fig. 3(b) is a snapshot of
the experimental run. We refer the interested reader to the
attached multimedia file for a movie of the full simulation
and experimental runs.

VI. EXTENSION TO PERIODIC BOUNDARIES

In this section, we consider the system of 3 robots with
kinematics given by (1) where ui is determined by the wind-
driven double-gyre flow model with noise

ẋ =−πAsin(π
f (x, t)

s
)cos(π

y
s
)−µx+η1(t), (5a)

ẏ = πAcos(π
f (x, t)

s
)sin(π

y
s
)

d f
dx
−µy+η2(t), (5b)

f (x, t) = ε sin(ωt +ψ)x2 +(1−2ε sin(ωt +ψ))x. (5c)

When ε = 0, the double-gyre flow is time-independent,
while for ε 6= 0, the gyres undergo a periodic expansion
and contraction in the x direction. In (5), A approximately
determines the amplitude of the velocity vectors, ω/2π gives
the oscillation frequency, ε determines the amplitude of the



Fig. 4. Phase portrait of the model given by (5) with A = 10, µ = 0.005,
ε = 0, ψ = 0, I = 0, and s = 50.

left-right motion of the separatrix between the gyres, ψ is the
phase, µ determines the dissipation, s scales the dimensions
of the workspace, and ηi(t) describes a stochastic white
noise with mean zero and standard deviation σ =

√
2I, for

noise intensity I. In this work, ηi(t) can be viewed as either
measurement or environmental noise. Fig. 4 shows the phase
portrait of the time-independent double-gyre model.

Fig. 5 shows the use of the control strategy (3) and (4)
to track the Lagrangian coherent structures of the periodic
double-gyre model with noise. As mentioned in Section I,
LCS are extensions of stable and unstable manifolds to non-
autonomous dynamical systems [21]. We note that while
the control strategy was based on techniques developed for
time-independent systems, the method performs surprisingly
well in tracking LCS for slow time-varying systems in the
presence of noise. Details regarding LCS computation can be
found in [5] and we refer the interested reader to the attached
multimedia file for a movie of the full simulation run. While
the control strategy was developed for static flows, the movie
shows the robustness of the strategy for tracking LCS in
time-varying flows.

VII. DISCUSSION

In this paper, we have designed a control strategy that
allows collaborating robots to track coherent structures and
manifolds on general static conservative flows. In addition,
we showed how the strategy can be used to track LCS in
time-dependent conservative flows with measurement noise.
The saddle straddle control strategy is based on the com-
munication of local velocity field measurements obtained
by each robot. Using the local velocity field information
provided by the two straddling robots (the herders), one
robot (the tracker), is able to detect the coherent structures, a
global structure that delineates the phase space into different
dynamical regions. Our work is novel in that the robots are
determining the location of a global structure based solely on
local information, and as far as we know, the sensing of LCS
in the ocean has never been performed using autonomous
vehicles. Moreover, only initial state knowledge of the LCS
is required locally to get an accurate prediction of the global
structure.

While the cooperative control strategy was inspired by
the PIM Triple Procedure, a procedure that relies on the
computation of escape times which is a global property of

the system, the controller itself only relies on information
provided by each robot’s onboard sensors. We also note that
the realization of the control strategy by the team of robots
can be achieved without the need for global localization
information. As such, the strategy is a purely local strategy.
Furthermore, the cooperative control strategy was derived to
track the manifolds on a static flow, but performs surprisingly
well at tracking the LCS in the time-dependent double-gyre
model in the presence of noise.

Since realistic quasi-geostrophic ocean models exhibit
double-gyre flow solutions, our first attempt seems to suggest
that our methods may be general enough to be applied to
more complicated models, including multi-layer PDE ocean
models. As mentioned in Section IV the robustness of the
control strategy is dependent on numerous parameters in the
system which includes robots’ sensing and communication
ranges, the bounds on the sensor and actuation noise, the
vector interpolation technique, the sampling frequency, and
the relative time scales of the AUV dynamics in relation to
the surrounding flow dynamics. While our initial results sug-
gest that our approach may be robust enough to measurement
noise, a more thorough understanding of the sensitivity of the
proposed strategy to these various parameters is instrumental
in extending our approach to more realistic ocean models and
for field deployment.

VIII. FUTURE WORK

In recent years, there has been significant interest in the
use of AUVs to collect scientific data in the ocean to improve
our ability to forecast harmful algae blooms and weather
and climate patterns. One drawback to operating sensors in
time-dependent and stochastic environments like the ocean
is that the sensors will tend to escape from their monitoring
region of interest. As such, the ability to identify and
track Lagrangian coherent structures (LCS) in these dynamic
environments is paramount in maintaining appropriate sensor
coverage in regions of interest. Additionally, since LCS have
been shown to coincide with optimal trajectories in the ocean
which minimize the energy and navigation time [3], [4], real-
time knowledge of these “super-highways” is key in planning
efficient AUVs paths.

Of particular interest is the extension of our method to
more realistic ocean models. Specifically, can we extend
our current cooperative tracking strategy to a swarm of
heterogenous mobile and stationary sensors? By increasing
the team size and incorporating both stationary and mobile
sensing devices, it is possible to refine our tracking tech-
nique to reveal the coherent structures at various spatial
and time scales. One immediate direction for future work
is to investigate how the proposed strategy scales to larger
team sizes. Second, underwater environments pose unique
challenges in terms of wireless communications. In general,
acoustic transmissions generally have low data rates and
acoustic wave propagation can be further affected by the
surrounding fluid dynamics [22]. As such, a second direction
for future work is to investigate how communication delays
and missed transmissions impact the overall accuracy of



(a) t=0.8 (b) t=1.4 (c) t=1.8 (d) t=2.6

(e) t=3.0 (f) t=3.2 (g) t=3.6 (h) t=4.0

Fig. 5. Trajectories of the team of 3 robots tracking the Lagrangian coherent structures of the system described by (5) with A = 10, µ = 0.005, ε = 0.1,
ψ = 0, I = 0.01, and s = 50. The trajectories of the straddling robots are shown in black and the estimated LCS is shown in white.

the tracking methodology. In this work, we assume an
initial state knowledge of the LCS is required. This initial
formation may be difficult to achieve without any prior global
knowledge of the flows. By considering a team of both
stationary and mobile sensors, one can potentially obtain an
initial estimate of a local LCS through the stationary sensing
network which can then be tracked and further refined by
the mobile nodes. A third direction for future work is to
determine how one can strategically place a combination of
mobile and stationary sensors to provide real-time updates
on the locations of LCS.
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